
DUTCOME BASED EDUCATION BOOKLET

ELECTRONICS AND COMMUNICATION ENGINEERING

B.Tech

For the Batch of Students admitted during Academic Year 2018-19

.....Moving Towards Perfection in Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING

2 0 0 0

(AUTONOMOUS)

Approved by AICTE: Affiliated to JNTUH and Accredited by NAAC with 'A' Grade Dundigal, Hyderabad - 500 043

Vision

To produce professionally competent Electronics and Communication Engineers capable of effectively and efficiently addressing the technical challenges with social responsibility.

Mission

The mission of the Department is to provide an academic environment that will ensure high quality education, training and research by keeping the students abreast of latest developments in the field of Electronics and Communication Engineering aimed at promoting employability, leadership qualities with humanity, ethics, research aptitude and team spirit.

Contents Program Education Objectives and Outcomes

S. No.		Page No.
PART	– I (As Per NBA Norms post June, 2015)	
1	Program Educational Objectives, Outcomes and Assessment Criteria	5
2	B. Tech - Electronics and Communication Engineering Program Educational Objectives	6
3	B. Tech - Electronics and Communication Engineering Program Outcomes and Program Specific Outcomes	8
4	Mapping of Program Educational Objectives to Program Outcomes and Program Specific Outcomes	10
5	Relation between the Program Outcomes and Program Specific Outcomes and the Program Educational Objectives	12
6	Program Outcomes and Program Specific Outcomes of (B.Tech) ECE Graduates	14
7	Procedures for Outcome Delivery and Assessment with Respect to Program Outcomes and Program Specific Outcomes	18
8	Methods of Measuring Learning Outcomes and Value Addition	20
PART -	- II ASSESSMENT OF COURSE LEVEL STUDENT LEARNING OUTCOMES	
1	Course Purpose	25
2	Expected Learning Outcomes	26
3	To Define Effective Learning Outcome Statements	26
4	Tips for Developing Course Level Expected Learning Outcomes Statements	28
5	Sample Expected Learning Outcomes Statements	29
6	An Overview of Assessment	30
7	Description of a Course Purpose	31
8	Procedure for Development of Expected Learning Outcomes for a Course	32
9	References	32
ANNE	XURES	
A	Sample Course Descriptor (As Per NBA Norms post June, 2015)	34

As Per NBA Norms Post June, 2015 Semester: I-I,I-II,II-I, II-II, III-II, IV-I & IV-II

Part – I

PROGRAM EDUCATIONAL OBJECTIVES AND OUTCOMES

First version 22 July, 2014

Program Educational Objectives, Program Outcomes and Assessment Criteria (Approved by DAC ECE on 3/9/2014):

Electronics and Communication Engineering Department Advisory Council: The Electronics and Communication Engineering Department Advisory Council (ECEDAC) includes a diverse group of experts from academic and industry, as well as alumni representation. The Advisory Board meets annually, or as needed, for a comprehensive review of the Electronics and Communication Engineering Department strategic planning and programs. The Advisory Council meets with administration, faculty and students and prepares a report, which is presented to principal. In each visit, the Department of Electronics and Communication Engineering responds to the report indicating improvements and amendments to the program.

1. PROGRAM EDUCATIONAL OBJECTIVES, OUTCOMES AND ASSESSMENT CRITERIA

Learning Outcomes, Assessment Criteria

The educational aims of a module are statements of the broad intentions of the teaching team. They indicate the objectives that the teaching team intends to cover and the learning opportunities that are necessary to be available to the student. A learning outcome is a statement that indicates the content that a learner (student) is expected to know, understand and/or be able to do at the end of a period of learning. It is advisable to express learning outcomes with the common prefix:

'On completion of (the period of learning e.g. module), the student is expected to be able to...'

Generally, learning outcomes do not specify curriculum, but more general areas of learning. It is not possible to prescribe precisely how specific a learning outcome statement should be. There is a balance to be struck between the degree of specificity in a learning outcome statement and that achieved by the assessment criteria. If there are too many learning outcomes for a module, then either they are becoming assessment criteria or they are specifying too much curricular detail. The curriculum should be described in the range statement. Too few learning outcomes are unlikely to provide sufficient information on the course. As a guide, there should be between 4 and 8 learning outcomes for a course.

The Program Educational Objectives (PEOs) of the Electronics and Communication Engineering department are broad statements or road maps describing career and professional objectives that intend the graduates to achieve through this program.

2. B. TECH - ELECTRONICS AND COMMUNICATION ENGINEERNIG PROGRAM

EDUCATIONAL OBJECTIVES

A graduate of Institute of Aeronautical Engineering in Electronics and Communication Engineering discipline should have a successful career in Electronics and Communication Engineering or a related field, and within three to five years, should attain the following:

PROGRAM EDUCATIONAL OBJECTIVES:

Program Educational Objective – I

To be excel in professional career, in applied research by acquiring the knowledge in the fundamentals of Electronics and Communication Engineering principles and professional skills through rigorous learning – teaching.

Program Educational Objective - II

To be in a position to analyze real life problems and design socially accepted and economically feasible solutions in the field of electronics & communication engineering or other allied engineering or other fields.

Program Educational Objective - III

To involve themselves in lifelong learning and professional development by pursuing higher education and participation in research and development activities to integrate engineering issues to broader social contexts.

Program Educational Objective - IV

To exhibit effective communication skills in their professional career, lead a team with good leadership traits and good interpersonal relationship with the members related to other engineering streams.

These objectives are quite broad by intention, as Electronics and Communication Engineering graduates may seek further education or work in diverse areas. To make these objectives meaningful, they may be demonstrated by performance, actions, or achievements.

I. To prepare the students who will be able to attain a solid foundation in Electronics and Communication engineering fundamentals with an attitude to pursue continuing education.

- a. Make the students to understand their aptitude to choose the correct path of study which leads to higher qualifications and heights in the chosen field.
- b. Should be prepared to undergo rigorous training in their fields of working.
- c. Be capable of utilizing the solid foundation obtained at institute to apply successfully in solving the real time engineering problems.
- d. Students need to have creative thinking processes that are acquired through good training to find solutions to engineering problems.

II. To prepare the students to function professionally in an increasingly international and rapidly changing world due to the advances in technologies and concepts and to contribute to the needs of the society.

- a. Adoptability and accommodative mind set to suit modern world and changing economies.
- b. By working hard in the chosen field and sharing the professional experience at different forums within and outside the country.
- c. Desirable to be a member of various professional societies (IEEE, IETE, ISTE, IE, and etc.) to keep yourself abreast with the state-of-the-art technology.
- d. Should continue additional education in a broad range of subjects other than engineering may be needed in order to meet professional challenges efficiently and effectively.
- e. Continuous interaction with educational and research institutions or industrial research labs.
- f. Have a sound foundation of knowledge within a chosen field and achieve good depth and experience of practice in it.
- g. Able to relate knowledge within chosen field to larger problems in society and able to appreciate the interaction between science, technology, and society.
- h. Strong grasp of quantitative reasoning and an ability to manage complexity and ambiguity.
- i. To conduct research, and design, develop, test and oversee the development of electronic systems for global upliftment.
- j. Applying scientific knowledge to solve technical problems and develop products and services that benefit the society.
- k. An electronic engineer shall contribute to the society by research, design and development, testing and evaluation, application by manufacturing, maintenance by service, management and other functions like sales, customer service and etc.

III. To prepare the students to acquire and exercise excellent leadership qualities, at various levels appropriate to their experience, to address issues in a responsive, ethical, and innovative manner.

- a. Gives ample opportunity to work in diverse fields to acquire leadership roles in professional circles outside the workplace.
- b. Should keep in mind that the opportunities may change with the times.
- c. Should be prepared for creative solo and collaborative brainstorming sessions.
- d. Be able to inspire the team with selfless motivation and attitude to achieve success.
- e. Ability to think laterally or at-least have a flexibility of thought and make choices based on the requirement for situation.

IV. To prepare the students who will be able to excel, in their careers by being a part of success and growth of an organization, with which they are associated.

- a. To achieve this, the focus should not be limited to an engineering curriculum and even to the class room.
- b. Continuing professional education by attending short term in courses design to update engineering skills.
- c. A lifelong commitment to learning new and specialized information.
- d. Should accept first person responsibility and should take the initiative in carrying out the work
- e. Should be determined for the duty and dedicated to work and have passion for that.

- f. Be delight at work with a positive attitude.
- g. Should be a detailed worker so that one can be relied by the organization.

The department of Electronics and Communication Engineering periodically reviews these objectives and as part of this review process, encourages comments from all interested parties including current students, alumni, prospective students, faculty those who hire or admit our graduates to other programs members of related professional organizations, and colleagues from other educational institutions.

3. B. TECH - ELECTRONICS AND COMMUNICATION ENGINEERNIG PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

A graduate of the Electronics and Communication Engineering Program Outcomes will demonstrate:

PROGRAM OUTCOMES:

PO1. Engineering Knowledge

Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems

PO2. Problem Analysis

Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

PO3. Design/Development of Solutions

Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

PO4. Conduct Investigations of Complex Problems

Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions

PO5. Modern Tool Usage

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations

PO6. The Engineer and Society

Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice

PO7. Environment and Sustainability

Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development

PO8. Ethics

Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice

PO9. Individual and Team Work

Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings

PO10. Communication

Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

PO11. Project Management and Finance

Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

PO12. Life-long Learning

Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

PROGRAM SPECIFIC OUTCOMES

PSO1. Professional Skills

An ability to understand the basic concepts in Electronics & Communication Engineering and to apply them to various areas, like Electronics, Communications, Signal processing, VLSI, Embedded systems etc., in the design and implementation of complex systems.

PSO2. Problem-solving skills

An ability to solve complex Electronics and communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions.

PSO3. Successful career and Entrepreneurship

An understanding of social-awareness & environmental-wisdom along with ethical responsibility to have a successful career and to sustain passion and zeal for real-world applications using optimal resources as an Entrepreneur.

4. MAPPING OF PROGRAM EDUCATIONAL OBJECTIVES TO PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

The following Figure shows the correlation between the PEOs and the POs and PSOs

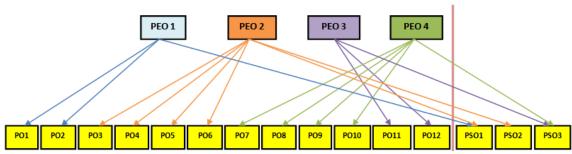


Figure: Correlation between the PEOs and the POs and PSOs

The following Table shows the correlation between the Program Educational Objectives and the Program Outcomes & Program Specific Outcomes

S. No.	Program Educational Objectives		Program Outcomes & Program Specific Outcomes
I	To be excel in professional career, in applied research by acquiring the knowledge in the fundamentals of Electronics and Communication Engineering principles and	PO1	Engineering Knowledge Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems
	professional skills through rigorous learning – teaching.	PO2	Problem Analysis Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
		PSO1	Professional Skills An ability to understand the basic concepts in Electronics & Communication Engineering and to apply them to various areas, like Electronics, Communications, Signal processing, VLSI, Embedded systems etc., in the design and implementation of complex systems
II	To be in a position to analyze real life problems and design socially accepted and economically feasible	PO3	Design/Development of Solutions Design solutions for complex engineering problems and design system components or

S. No.	Program Educational Objectives		Program Outcomes &
	solutions in the field of electronics & communication engineering or other allied engineering or other fields.		Program Specific Outcomes processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
		PO4	Conduct Investigations of Complex Problems Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis
		PO5	of the information to provide valid conclusions Modern Tool Usage Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
		PO6	The Engineer and Society Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
		PSO1	Professional Skills An ability to understand the basic concepts in Electronics & Communication Engineering and to apply them to various areas, like Electronics, Communications, Signal processing, VLSI, Embedded systems etc., in the design and implementation of complex systems
		PSO2	Problem-solving skills An ability to solve complex Electronics and communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions
III	To involve themselves in lifelong learning and professional development by pursuing higher education and participation in research and development activities to integrate engineering issues to broader social contexts.	PO11	Project Management and Finance Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
	oroader social contexts.	PO12	Life-long Learning Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change
		PSO3	Successful career and Entrepreneurship An understanding of social-awareness & environmental-wisdom along with ethical

S. No.	Program Educational Objectives		Program Outcomes & Program Specific Outcomes
			responsibility to have a successful career and to
			sustain passion and zeal for real-world
			applications using optimal resources as an
			Entrepreneur
IV	To exhibit effective communication	PO7	Environment and Sustainability
	skills in their professional career,		Understand the impact of the professional
	lead a team with good leadership		engineering solutions in societal and
	traits and good interpersonal		environmental contexts, and demonstrate the
	relationship with the members		knowledge of, and need for sustainable
	related to other engineering streams.	PO8	development Ethics
		PU	Apply ethical principles and commit to
			professional ethics and responsibilities and
			norms of the engineering practice
			6 1 8 1 mm
		PO9	Individual and Team Work
			Function effectively as an individual, and as a
			member or leader in diverse teams, and in
			multidisciplinary settings
		PO10	Communication
		1010	Communication Communicate effectively on complex
			engineering activities with the engineering
			community and with society at large, such as,
			being able to comprehend and write effective
			reports and design documentation, make
			effective presentations, and give and receive
			clear instructions
		PSO3	Successful career and Entrepreneurship
			An understanding of social-awareness & environmental-wisdom along with ethical
			responsibility to have a successful career and to
			sustain passion and zeal for real-world
			applications using optimal resources as an
			Entrepreneur

5. RELATION BETWEEN THE PROGRAM OUTCOMES AND PROGRAM EDUCATIONAL OBJECTIVES

A broad relation between the Program Educational Objectives and the Program Outcomes is given in the following table:

POs	PEOs	(1) Excellence in Career	(2) Professional Effectiveness And Contribution to Society	(3) Continuing Education	(4) Exercising Leadership
PO1	Engineering Knowledge			3	
PO2	Problem Analysis			3	

POs	PEOs	(1) Excellence in Career	(2) Professional Effectiveness And Contribution to Society	(3) Continuing Education	(4) Exercising Leadership
PO3	Design/Development of Solutions		3		2
PO4	Conduct Investigations of Complex Problems	3			3
PO5	Modern Tool Usage		2	2	
PO6	The Engineer and Society		3		2
PO7	Environment and Sustainability		3		3
PO8	Ethics		3		
PO9	Individual and Team work	3		3	
PO10	Communication		3		
PO11	Project Management and Finance				2
PO12	Life-long Learning	2		1	2

Relationship between Program Outcomes and Program Educational Objectives Key: 3 = Highly Related; 2 = Medium; 1= Low

RELATION BETWEEN THE PROGRAM SPECIFIC OUTCOMES AND THE PROGRAM EDUCATIONAL OBJECTIVES

A broad relation between the program Educational Objectives and the Program Specific Outcomes are given in the following table:

	PEOs -	(1)	(2)	(3)	(4)
PSOs		Excellence	Professional	Continuing	Exercising
1 1		in Career	Effectiveness	Education	Leadership
↓			And Contribution		
'			to Society		
PSO1	Professional Skills		3		2
PSO2	Problem-solving skills	3		2	1
PSO3	Successful career and Entrepreneurship	2	3	2	

Relationship between Program Specific Outcomes and Program Educational Objectives Key: 3 = Highly Related; 2 = Medium; 1= Low

Note:

- a. The assessment process can be direct or indirect.
- b. The direct assessment will be through interim assessment by the faculty or by industry / technology experts.
- c. The indirect assessment on the other hand could be by students through course outcomes, lab evaluation, department associations, exit interviews, engineering services, GATE etc.
- d. Frequency of assessment can be once in a semester and justified by the program coordinator.

6. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES OF (B.Tech) ECE GRADUATES

Graduates from accredited programs must achieve the following learning outcomes, defined by broad areas of learning.

The outcomes are distributed within and among the courses within our curriculum, and our students are assessed for the achievement of these outcomes, as well as specific course learning objectives, through testing, surveys, and other faculty assessment instruments. Information obtained in these assessments is used in a short-term feedback and improvement loop.

Each Electronics and Communication Engineering student will demonstrate the following attributes by the time they graduate:

PO1. Engineering Knowledge

Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems

Performance Criteria Definitions

- ☐ Identify the concepts and/or equations
- □ Execute the solution using a logic and structured approach
- □ Evaluate the solution of the problem

PO2. Problem Analysis

Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences

Performance Criteria Definitions

- □ Identify an engineering problem
- □ Formulate appropriate theoretical basis for the analysis of a given problem
- □ Analyze an engineering problem
- □ Evaluate the appropriate solution to an engineering problem

PO3. Design/Development of Solutions

Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

Performance Criteria Definitions

- Awareness of global effects of the product / practice / event
- □ Understanding of economic factors
- ☐ Awareness of implications to society at large

PO4. Conduct Investigations of Complex Problems

Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions

Performance Criteria Definitions

- □ Identify problem/purpose
- Prepare hypothesis

	Outline procedure
	List materials and equipment
	Conduct experiment
	Record observations, data and results
	Perform analysis
	Document conclusions
Create, tools in understa	select, and apply appropriate techniques, resources, and modern engineering and IT acluding prediction and modeling to complex engineering activities with an anding of the limitations mance Criteria Definitions
	Use modern engineering tools for the system design, simulation and analysis
	Use software applications effectively to write technical reports and oral presentations
	Use modern equipment and instrumentation in the design process, analysis and troubleshooting
engineer	Itural issues and the consequent responsibilities relevant to the professional ring practice mance Criteria Definitions
	Informal meetings on current issues
	Participation in public service extracurricular activities
	Required Humanities and Social Sciences (HSS) courses on contemporary issues
Underst environ develop	nvironment and Sustainability and the impact of the professional engineering solutions in societal and mental contexts, and demonstrate the knowledge of, and need for sustainable ment mance Criteria Definitions
	Develop a methodology to accomplish the design
_	Select a solution from the potential solutions
	Implement the solution
the engi	thical principles and commit to professional ethics and responsibilities and norms of neering practice mance Criteria Definitions
	Demonstrate knowledge of professional code of ethics
	Understanding of ethical and professional issues
	Acknowledge the work of other in a consistent manner

PO9. Individual and Team Work

□ Exhibit honest behavior

Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings

Performance Criteria Definition

- □ Research and gather information
- □ Share responsibilities and duties
- □ Fulfill team role's duties
- □ listen to other teammates

PO10. Communication

Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

Performance Criteria Definitions

- ☐ Use appropriate format and grammatical structure
- □ Create a well organized document
- □ Present the results appropriately
- □ Demonstrate effective oral communication

PO11. Project Management and Finance

Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

Performance Criteria Definitions

- ☐ Awareness of global effects of the product / practice / event
- □ Understanding of economic factors
- □ Awareness of implications to society at large

PO12. Life-long Learning

Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

Performance Criteria Definitions

- ☐ Find relevant sources of information
- Participate in school or professional seminars
- □ Participate in students or professional associations

PROGRAM SPECIFIC OUTCOMES OF (B. Tech) ECE GRADUATES

PSO1. Professional Skills

An ability to understand the basic concepts in Electronics & Communication Engineering and to apply them to various areas, like Electronics, Communications, Signal processing, VLSI, Embedded systems etc., in the design and implementation of complex systems

Performance Criteria Definitions

- Significantly contributing and delivery of desired engineering component, product or process
- □ Formulating and solving, moderately complex Electronics and Communication Engineering problems
- □ Skillful use of state-of-the-art tools for Electronics and Communication Engineering

processes

☐ Making practical recommendations that address issues related to Electronics and Communication Engineering product and systems

PSO2. Problem-solving skills

An ability to solve complex Electronics and communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions

Performance Criteria Definitions

- □ Problem or opportunity identification
- □ Problem formulation and abstraction
- □ Information and data collection.
- Model translation
- □ Experimental design and solution development.
- □ Implementation and documentation.

PSO3. Successful career and Entrepreneurship

An understanding of social-awareness & environmental-wisdom along with ethical responsibility to have a successful career and to sustain passion and zeal for real-world applications using optimal resources as an Entrepreneur

Performance Criteria Definitions

- ☐ Investigate and define a problem and identify constraints relating to health, safety, environmental and sustainability and assessment of risks based on these constraints.
- □ Understand customer and user needs and the importance of considerations such as aesthetics Identify and manage costs and drivers thereof.
- ☐ Use creativity to establish innovative solution Ensure fitness of purpose, for all aspects of the problem including production, operation, maintenance and disposal.
- ☐ Manage the design process and evaluate outcomes.

Courses offered in Electronics and Communication Engineering Curriculum (IARE-R18) – Vs- Program Outcomes and Program Specific Outcomes Attained through course modules for I-I, I-II Semesters

Cada	Subject.						P	O						PSO 12 1 2 3		
Code	Subject	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
I Semest	er B.Tech															
AHSB01	English															
AHSB02	Linear Algebra and Calculus	1														
AHSB04	Waves and Optics	1														
AHSB08	English Language and Communication Skills Laboratory										1	V	V		√	
AHSB10	Engineering Physics Laboratory				\checkmark								\checkmark			
AMEB02	Engineering Graphics and Design Laboratory											V				
II Semester B.Tech																
AHSB11	Mathematical Transform Techniques	$\sqrt{}$												$\sqrt{}$		

AHSB03	Engineering Chemistry					$\sqrt{}$				$\sqrt{}$		
ACSB01	Programming for Problem Solving	V	V						\checkmark	\checkmark	1	\checkmark
AEEB02	Electrical Circuit Analysis	V	V	V						\checkmark		
AHSB09	Engineering Chemistry Laboratory											
ACSB02	Programming for Problem Solving Laboratory											
AMEB01	Workshop / Manufacturing Practices Laboratory											
AEEB06	Electrical Circuit Analysis Laboratory			 							$\sqrt{}$	

7. PROCEDURES FOR OUTCOME DELIVERY AND ASSESSMENT WITH RESPECT TO PROGRAM **OUTCOMES AND PROGRAM SPECIFIC OUTCOMES**

The categorization of outcomes of the above Electronics and Communication Engineering courses is grouped as follows:

The Courses covered by Individual Program Outcomes and Program Specific Outcomes

PO1: Engineering Knowledge Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems								
I Semester	B.Tech	II Semester I	B.Tech					
AHSB02	Linear Algebra and Calculus	AHSB11	Mathematical Transform Techniques					
AHSB04	Waves and Optics	AHSB03	Engineering Chemistry					
AHSB10	Engineering Physics Laboratory	ACSB01	Programming for Problem Solving					
		AEEB02	Electrical Circuit Analysis					
		AEEB06	Electrical Circuit Analysis Laboratory					

Identify,	olem Analysis formulate, review research literature substantiated conclusions using first p g sciences		
I Semester	B.Tech	II Semester l	B.Tech
AHSB02	Linear Algebra and Calculus	AHSB11	Mathematical Transform Techniques
AHSB04	Waves and Optics	AHSB03	Engineering Chemistry
AHSB10	Engineering Physics Laboratory	ACSB01	Programming for Problem Solving

1 Schiester 1	b. reen	II Schiester I	D. I CCII
AHSB02	Linear Algebra and Calculus	AHSB11	Mathematical Transform Techniques
AHSB04	Waves and Optics	AHSB03	Engineering Chemistry
AHSB10	Engineering Physics Laboratory	ACSB01	Programming for Problem Solving
		AEEB02	Electrical Circuit Analysis
		AEEB06	Electrical Circuit Analysis Laboratory

PO3: Design/Development of Solutions Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations II Semester B.Tech I Semester B.Tech

PO4: Conduct Investigations of Complex Problems Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions			
I Semester B.Tech		II Semester B.Tech	
AHSB04	Waves and Optics	AHSB11	Mathematical Transform Techniques
AHSB10	Engineering Physics Laboratory	AHSB03	Engineering Chemistry
		AEEB02	Electrical Circuit Analysis
		AEEB06	Electrical Circuit Analysis Laboratory

PO5: Modern Tool Usage

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations

I Semester B.Tech		II Semester B.Tech	
		ACSB01	Programming for Problem Solving
		AEEB06	Electrical Circuit Analysis Laboratory

PO6: The Engineer and Society

Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice

I Semester B.Tech	II Semester B.Tech

PO7: Environment and Sustainability

Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development

	- · · · · · · · · · · · · · · · · · · ·		
I Semester B.Tech		II Semester I	B.Tech
		AHSB03	Engineering Chemistry

PO8: Ethics

Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice

engineering practice				
I Semester B.Tech	II Semester B.Tech			

PO9: Individual and Team Work

Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings

I Semester B.Tech		II Semester B.Tech	
AHSB01	English		
AHSB10	Engineering Physics Laboratory		

PO10: Communication

Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

I Semester	B.Tech	II Semester	B.Tech
AHSB01	English		
AHSB08	English Language and Communication Skills Laboratory		
AMEB02	Engineering Graphics and Design Laboratory		

PO11: Project Management and Finance

Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

I Semester	B.Tech	II Semester	B.Tech
AHSB01	English		
AHSB08	English Language and Communication Skills Laboratory		

AHSB10	Engineering Physics Laboratory	
AMEB02	Engineering Graphics and Design Laboratory	

PO12: Life-long Learning Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change			
I Semester B.Tech		II Semester B.Tech	
AHSB08	English Language and Communication Skills Laboratory	ACSB01	Programming for Problem Solving
AHSB10	Engineering Physics Laboratory		
AMEB02	Engineering Graphics and Design		

PSO1: Professional Skills

An ability to understand the basic concepts in Electronics & Communication Engineering and to apply them to various areas, like Electronics, Communications, Signal processing, VLSI, Embedded systems etc., in the design and implementation of complex systems

I Semester B.Tech		II Semester B.Tech	
AHSB02	Linear Algebra and Calculus	AHSB11	Mathematical Transform Techniques
AHSB04	Waves and Optics	AHSB03	Engineering Chemistry
		ACSB01	Programming for Problem Solving
		AEEB02	Electrical Circuit Analysis

PSO2: Problem-solving skills

An ability to solve complex Electronics and communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions

I Semester B.Tech		II Semester B.Tech				
AHSB08	English Language and Communication Skills Laboratory	ACSB01	Programming for Problem Solving			
AMEB02	Engineering Graphics and Design Laboratory	AEEB06	Electrical Circuit Analysis Laboratory			

PSO3: Successful career and Entrepreneurship

An understanding of social-awareness & environmental-wisdom along with ethical responsibility to have a successful career and to sustain passion and zeal for real-world applications using optimal resources as an Entrepreneur

I Semester B.Tech		II Semester B.Tech			
AHSB01	English	ACSB01	Programming for Problem Solving		
AHSB10	Engineering Physics Laboratory				

8. METHODS OF MEASURING LEARNING OUTCOMES AND VALUE ADDITION

There are many different ways to assess student learning. In this section, we present the different types of assessment approaches available and the different frameworks to interpret the results.

- i. Mid Semester Course Evaluation
- ii. End-of Semester Course Evaluation
- iii. Continuous Evaluation of Classroom Performance
- iv. Course Objective Surveys
- v. Course Instructor's Evaluations
- vi. Graduating Senior's survey
- vii. Alumni Survey

- viii. Employer Survey
- ix. Laboratory and Project Works
- x. Balanced Composition in Curriculum
- xi. Department Academic Committee and Faculty Meetings
- xii. Professional Societies

The above assessment indicators are detailed below.

i. Mid Semester Course Evaluation

Mid semester course reviews are conducted for all courses by the department. All students are encouraged to actively participate in this evaluation process. These evaluations are critically reviewed by HOD and senior faculty and the essence is communicated to the faculty concerned to analyze, improve and practice so as to improve the performance of the student.

ii. End-of Semester Course Evaluation

The end-of semester course reviews are conducted, feedback taken from students and remedial measures will be taken up such that the student gets benefited before going for the university end exams. The positive and negative comments made by the students about the course are recorded and submitted to the departmental academic council (DAC) and to the Principal for taking necessary actions to better the course for subsequent semesters.

iii. Continuous Evaluation of Classroom Performance

Students are encouraged and motivated to participate actively in the classroom proceedings by way of interactive teaching by the instructor. Surprise class tests comprising of short answer questions, quiz based discussions, multiple-choice, true-false, and matching tests are conducted to strengthen the teaching-learning process. Apart from teacher control and covering content, the teacher also acts as a felicitator and students discover things for themselves, enabling them to be more independent and becoming lifelong learners exploring student-centric educational philosophy.

iv. Course Objective Surveys

Students are encouraged to fill-out a brief survey on the fulfillment of course objectives. The data is reviewed by the concerned course faculty and the results are kept open for the entire faculty. Based on this, alterations or changes to the course objectives are undertaken by thorough discussions infaculty and DAC meetings.

v. Course Instructor's Evaluations

The course coordinator will collect the course portfolios from the respective instructors of each course offered in a given semester at the beginning of the semester as well as at the end of the semester. They remain on file for verification and study by the entire faculty. This helps the course coordinator and faculty to understand how effectively we can teach the given course. Betterment can be achieved from time to time and continuous improvement can be shown in handling courses in the subsequent semesters.

vi. Graduating Senior's Survey

The graduating senior's survey form is to be filled by all the students leaving the institution. The questionnaire is designed in such a way to gather information from the students regarding the program educational objectives, solicit about program experiences, carrier choices, as well as any suggestions and comments for the improvement of the program. The opinions expressed in exit interview forms are reviewed by the DAC for implementation purposes.

vii. Alumni Survey

The survey asks former students of the department about the status of their employment and further education, perceptions of institutional emphasis, estimated gains in knowledge and skills, involvement as undergraduate students, and continuing involvement with Institute of Aeronautical Engineering. This survey is administered every three years. The data obtained will be analyzed and used in continuous improvement.

viii. Employer Survey

The main purpose of this employer questionnaire is to know employer's views about the skills they require of employees compared to the skills actually possessed by them. The purpose is also to identify gaps in technical and vocational skills, need for required training practices to fill these gaps and criteria for hiring new employees. These employer surveys are reviewed by the College Academic Council (CAC) to affect the present curriculum to suit the requirements of the employer.

ix. Laboratory and Project Works

The laboratory work is continuously monitored and assessed to suit the present demands of the industry. Students are advised and guided to do project works giving solutions to research/industrial problems to the extent possible by the capabilities and limitations of the student. The results of the assessment of the individual projects and laboratory work can easily be conflated in order to provide the students with periodic reviews of their overall progress and to produce terminal marks and grading.

x. Balanced Composition in Curriculum

The undergraduate program in electronics and communication engineering is designed to prepare students for successful careers in engineering and related fields by providing a balanced education, that prepares students to apply analytical, computational, experimental, and methodological tools to solve engineering problems; a strong foundation in mathematics and physical sciences; a broad and balanced general education in the humanities, arts, social sciences, and interdisciplinary studies; sufficient training and development of skills for effective communication and teamwork; a proper understanding of an engineer's professional and ethical responsibilities in relation to engineering fields and society; and recognition of the need for lifelong learning. The student's intellectual and ethical development is assessed continuously in relation to the balanced composition in curriculum.

xi. Department Academic Committee and Faculty Meetings

The DAC meets bi-annually for every academic year to review the strategic planning and modification of PEOs. Faculty meetings are conducted at least once in fort night for ensuring the implementation of DAC's suggestions and guidelines. All these proceeding are recorded and kept for the availability of all faculties.

xii. Professional Societies

The importance of professional societies like IEEE, IETE, ISTE etc., are explained to the students and they are encouraged to become members of the above to carry out their continuous search for knowledge. Student and faculty chapters of the above societies are constituted for a better technical and entrepreneurial environment. These professional societies promote excellence in instruction, research, public service and practice.

Part - II

METHODOLOGY FOR PREPARATION AND ASSESSMENT OF COURSE LEVEL STUDENT LEARNING OUTCOMES

Although the term "Expected Learning Outcome" may be new, the process of identifying the key concepts or skills that students are expected to learn during specific courses is not. Many people are more familiar with the terms "course objective" or "course competency". Expected learning outcomes are really very similar to both of these concepts, so if you already have course objectives or competencies, you are close to having expected learning outcomes for class.

This will provide information on exactly what expected learning outcomes are and what methods can be used to assess them. This is designed to assist faculty with the process of developing expected learning outcomes and methods for assessing those outcomes in their courses. This provides basic information related to (1) course purpose; (2) expected learning outcomes; (3) methods for assessing expected learning outcomes; (4) criteria for grade determination; and (5) course outline.

Expected Learning Outcomes:

After reading and completing this, individuals will be able to:

- Prepare a description of the course as well as a written statement regarding the course's purpose;
- Construct/develop expected learning outcomes for the course;
- Create an assessment plan that outlines the specific methods that will be used to assess the expected student learning outcomes for a course;
- Describe how grades will be determined in a process that is separate and distinct from assessing the expected learning outcomes;
- Identify the common components of a course outline
- Revise their course syllabi to incorporate a course purpose, expected learning outcomes, methods to assess those outcomes, the criteria for grade determination, and a course outline.
- This process uses some terminology related to expected learning outcomes and assessment. A brief glossary of terms has been provided below for reference purposes.

Assessment of expected learning outcomes:

The process of investigating (1) what students are learning and (2) how well they are learning it in relation to the stated expected learning outcomes for the course.

Assessment plan:

The proposed methods and timeline for assessment-related activities in a given course (e.g., when are you going to check what/how well the students are learning and how are you going to do that?).

Classroom Assessment Technique (CAT):

Angelo and Cross (1993) developed a variety of techniques/activities than can be used to assess students' learning. These CATs are often done anonymously and are not graded. These activities check on the class' learning while students are still engaged in the learning process. An example of a CAT is a non-graded quiz given a few weeks before the first exam.

Course description:

A formal description of the material to be covered in the course.

Course purpose:

The course purpose describes the intent of the course and how it contributes to the programme. The course purpose goes beyond the course description.

Expected learning outcome:

A formal statement of what students are expected to learn in a course (synonyms for "expected learning outcome" include learning outcome, learning outcome statement, and student learning outcome).

Evaluation:

Making a judgment about the quality of student's learning/work and assigning marks based on that judgment. Evaluation activities (such as exams, papers, etc.) are often seen as formal ways to assess the expected learning outcomes for a course.

Methods for assessing student learning outcomes:

This term refers to any technique or activity that is used to identify what students are learning or how well they are learning. Formal methods for evaluating student learning outcomes include Continuous Assessment Tests, Mid Semester Test, Tutorials, and End Semester Examination etc. The assessment methods are used to identify how the well students have acquired the learning outcomes for the course.

1. COURSE PURPOSE

One of the first steps in identifying the expected learning outcomes for a course is identifying the purpose of teaching in the course. By clarifying the purpose of the course, faculty can help discover the main topics or themes related to students' learning. These themes help to outline the expected learning outcomes for the course.

The course purpose involves the following:

- 1. What role does this course play within the programme?
- 2. How is the course unique or different from other courses?
- 3. Why should/do students take this course? What essential knowledge or skills should they gain from this experience?
- 4. What knowledge or skills from this course will students need to have mastered to perform well in future classes or jobs?
- 5. Why is this course important for students to take?

The "Course Description" provides general information regarding the topics and content addressed in the course, the "Course Purpose" goes beyond that to describe how this course fits in to the students' educational experience in the programme.

2. EXPECTED LEARNING OUTCOMES

Expected Learning Outcome (definition)

An expected learning outcome is a formal statement of what students are expected to learn in a course. Expected learning outcome statements refer to specific knowledge, practical skills, areas of professional development, attitudes, higher-order thinking skills, etc. that faculty members expect students to develop, learn, or master during a course (Suskie, 2004). Expected learning outcomes are also often referred to as "learning outcomes", "student learning outcomes", or "learning outcome statements".

Simply stated, expected learning outcome statements describe:

- What faculty members want students to know at the end of the course and
- What faculty members want students to be able to do at the end of the course

Learning outcomes have three major characteristics

- They specify an action by the students/learners that is **observable**
- They specify an action by the students/learners that is **measurable**
- They specify an action that is done by the **students/learners** (rather than the faculty members)

Effectively developed expected learning outcome statements should possess all three of these characteristics. When this is done, the expected learning outcomes for a course are designed so that they can be assessed (Suskie, 2004).

3. TO DEFINE EFFECTIVE LEARNING OUTCOME STATEMENTS

When stating expected learning outcomes, it is important to use verbs that describe exactly what the learner(s) will be able to do upon completion of the course.

Examples of good action words to include in expected learning outcome statements:

Compile, identify, create, plan, revise, analyze, design, select, utilize, apply, demonstrate, prepare, use, compute, discuss, explain, predict, assess, compare, rate, critique, outline, or evaluate

There are some verbs that are unclear in the context of an expected learning outcome statement (e.g., know, be aware of, appreciate, learn, understand, comprehend, and become familiar with). These words are often vague, have multiple interpretations, or are simply difficult to observe or measure (American Association of Law Libraries, 2005). As such, it is best to avoid using these terms when creating expected learning outcome statements.

For example, please look at the following learning outcomes statements:

- The students will understand basic Electronic components.
- The students will appreciate knowledge discovery from Communication techniques.

Both of these learning outcomes are stated in a manner that will make them difficult to assess. Consider the following:

- How do you observe someone "understanding" a theory or "appreciating" Data Mining techniques?
- How easy will it be to measure "understanding" or "appreciation"?

These expected learning outcomes are more effectively stated the following way:

- The students will be able to identify and describe what techniques are used to extract knowledge from Communication techniques.
- The students will be able to identify the characteristics of Classification techniques from other Digital Communication techniques.

Incorporating Critical Thinking Skills into Expected Learning Outcomes Statements

Many faculty members choose to incorporate words that reflect critical or higher-order thinking into their learning outcome statements. Bloom (1956) developed a taxonomy outlining the different types of thinking skills people use in the learning process. Bloom argued that people use different levels of thinking skills to process different types of information and situations. Some of these are basic cognitive skills (such as memorization) while others are complex skills (such as creating new ways to apply information). These skills are often referred to as critical thinking skills or higher-order thinking skills.

Bloom proposed the following taxonomy of thinking skills. All levels of Bloom's taxonomy of thinking skills can be incorporated into expected learning outcome statements. Recently, Anderson and Krathwohl (2001) adapted Bloom's model to include language that is oriented towards the language used in expected learning outcome statements. A summary of Anderson and Krathwohl's revised version of Bloom's taxonomy of critical thinking is provided below.

Definitions of the different levels of thinking skills in Bloom's taxonomy

- 1. **Remember** recalling relevant terminology, specific facts, or different procedures related to information and/or course topics. At this level, a student can remember something, but may not really understand it.
- **2. Understand** the ability to grasp the meaning of information (facts, definitions, concepts, etc.) that has been presented.
- **3. Apply** being able to use previously learned information in different situations or in problem solving.
- **4. Analyze** the ability to break information down into its component parts. Analysis also refers to the process of examining information in order to make conclusions regarding cause and effect, interpreting motives, making inferences, or finding evidence to support statements/arguments.
- **5. Evaluate** being able to judge the value of information and/or sources of information based on personal values or opinions.
- **6. Create** the ability to creatively or uniquely apply prior knowledge and/or skills to produce new and original thoughts, ideas, processes, etc. At this level, students are involved in creating their own thoughts and ideas.

List of Action Words Related to Critical Thinking Skills

Here is a list of action words that can be used when creating the expected student learning outcomes related to critical thinking skills in a course. These terms are organized according to the different levels of higher-order thinking skills contained in Anderson and Krathwohl's(2001) revised version of Bloom's taxonomy.

REMEMBER	UNDERSTAND	APPLY	ANALYZE	EVALUATE	CREATE
Choose	Classify	Apply	Analyze	Agree	Adapt
Define	Compare	Build	Assume	Appraise	Build
Find	Contrast	Choose	Categorize	Assess	Change
How	Demonstrate	Construct	Classify	Award	Choose
Label	Explain	Develop	Compare	Choose	Combine
List	Extend	Experiment with	Conclusion	Compare	Compile
Match	Illustrate	Identify	Contrast	Conclude	Compose
Name	Infer	Interview	Discover	Criteria	Construct
Omit	Interpret	Make use of	Dissect	Criticize	Create
Recall	Outline	Model	Distinguish	Decide	Delete
Relate	Relate	Organize	Divide	Deduct	Design
Select	Rephrase	Plan	Examine	Defend	Develop
Show	Show	Select	Function	Determine	Discuss
Spell	Summarize	Solve	Inference	Disprove	Elaborate
Tell	Translate	Utilize	Inspect	Estimate	Estimate
What			List	Evaluate	Formulate
When			Motive	Explain	Happen
Where			Relationships	Importance	Imagine
Which			Simplify	Influence	Improve
Who			Survey	Interpret	Invent
Why			Take part in	Judge	Make up
			Test for	Justify	Maximize
			Theme	Mark	Minimize
				Measure	Modify
				Opinion	Original
				Perceive	Originate
				Prioritize	Plan
				Prove	Predict
				Rate	Propose
				Recommend	Solution
				Rule on	Solve
				Select	Suppose
				Support	Test
				Value	Theory

4. TIPS FOR DEVELOPING COURSE LEVEL EXPECTED LEARNING OUTCOMES STATEMENTS

- Limit the course-level expected learning outcomes to 5 10 statements for the entire course (more detailed outcomes can be developed for individual units, assignments, chapters, etc.).
- Focus on overarching or general knowledge and/or skills (rather than small or trivial details).
- Focus on knowledge and skills that are central to the course topic and/or discipline.
- Create statements that are student-centered rather than faculty-centered (e.g., "upon completion of this course students will be able to list the name of all Communication techniques" versus "one objective of this course is to teach the names of all Communication techniques").
- Focus on the learning that results from the course rather than describing activities or lessons in the course.
- Incorporate or reflect the institutional and departmental missions.

Incorporate various ways for students to show success (outlining, describing, modeling, depicting, etc.) rather than using a single statement such as "at the end of the course, students will know _____" as the stem for each expected outcome statement.

5. SAMPLE EXPECTED LEARNING OUTCOMES STATEMENTS

The following depict some sample expected learning outcome statements from selected courses.

Electronic Devices and circuits:

After completing this course, the student will be able to:

- Get clear understanding of internal physical behavior of PN junction Diode.
- Understand the breakdown mechanisms in semiconductors so as to construct a Zener voltage regulator used in regulated power supplies.
- Analyze various rectifiers and filter circuits used in regulated power supplies.
- Understand and operate the special purpose electronic devices (Tunnel Diode, Varactor Diode, LED, LCD & Photo diode), for various applications like digital display boards, fiber optic links, remote control equipment and etc.
- Understand the construction, operation and characteristics of Bipolar Junction Transistor, which can be used in the design of amplifiers.
- Understand the construction, operation and characteristics of JFET and MOSFET, which can be used in the design of amplifiers.
- Understand the need and requirements of biasing a transistor so that to avoid the failure of electronic circuits due to thermal effects
- Use this course as prerequisite to understand the more advanced courses like ECA, PDC, ICA, VLSI and etc.

Signals and Systems:

Students who complete this course should be able to:

- Understand the principles of vector spaces, including how to relate the concepts of basis, dimension, inner product, and norm to signals. Know how to analyze, design, approximate, and manipulate signals using vector-space concepts.
- Understand and classify signals (e.g. periodic, even) and systems (e.g. causal, linear) and an understanding of the difference between discrete and continuous time signals and systems, understand the principles of impulse functions, step function and signum function.
- Analyze the implications of linearity, time-invariance, causality, memory, and bounded-input, bounded-out (BIBO) stability.
- Determine the response of linear systems to any input signal by convolution in the time domain, and by transformation to the frequency domain, filter characteristics of a system and its bandwidth, the concepts of auto correlation and cross correlation and power density spectrum.
- Understand the definitions and basic properties (e.g. time-shift, modulation, Parseval's Theorem) of Fourier series, Fourier transforms, Laplace transforms, Z transforms, and an ability to compute the transforms and inverse transforms of basic examples using methods such as partial fraction expansions, ROC of Z Transform/Laplace Transform.

• Analyze the Sampling theorem, reconstruction, aliasing, and Nyquist's theorem to represent continuous-time signals in discrete time so that they can be processed by digital computers.

6. AN OVERVIEW OF ASSESSMENT

What is assessment?

According to Palomba and Banta (1999) assessment involves the systematic collection, review, and use of evidence or information related to student learning. Assessment helps faculty understand how well their students understand course topics/lessons. Assessment exercises are often anonymous. This anonymity allows students to respond freely, rather than trying to get the "right" answer or look good. Assessment exercises attempt to gauge students' understanding in order to see what areas need to be re-addressed in order to increase the students' learning.

In other words, assessment is the process of investigating (1) what students are learning and (2) how well they are learning it in relation to the stated expected learning outcomes for the course. This process also involves providing feedback to the students about their learning and providing new learning opportunities/strategies to increase student learning.

For example, Dr. JVR initiates a class discussion on material from Chapter One and determines that most students are confused about Topic X. This class discussion served as a method for assessing student learning and helped determine the fact that student learning related to Topic X is somewhat lacking. Dr. JVR now has the opportunity to (1) inform the students that there is some confusion and (2) make adjustments to address this confusion (e.g., ask student to re-read Chapter One, relecture over Topic X, etc.). This assessment process helps increase students' learning.

What is the difference between "evaluation" and "assessment"?

Evaluation focuses on making a judgment about student work to be used in assigning marks that express the level of student performance. Evaluation is usually used in the process of determining marks. Evaluation typically occurs after student learning is assumed to have taken place (e.g., a final exam). Evaluation is part of the assessment process. Course assignments that are evaluated/graded (e.g., exams, papers, tutorials, etc.) are often seen as formal assessment techniques.

While evaluation is an important component of most classrooms, it does have some limitations. For example, if the class average on an exam is a 45%, is seems pretty clear that something went wrong along the way. When one has only evaluated the final learning product, it can be challenging to go back and discover what happened. It can also be difficult to address the situation or provide opportunities for students to learn from their mistakes. Yes, a curve on an exam can help address a low class average, but does it help the students learn? Engaging in informal assessment activities throughout the course can help avoid this situation.

What is involved in the assessment process?

- 1. Establishing expected learning outcomes for the course;
- 2. Systematically gathering, analyzing, and interpreting evidence (through formal assessment activities such as exams or papers and informal assessment activities such as in-class discussions exercises) to determine how well the students' learning matches:
 - Faculty expectations for what students will learn and
 - The stated expected learning outcomes for the course
- 3. Faculty members should use this evidence/assessment of student learning to:

- Provide questioner to students about their learning (or lack thereof) and
- Adjust their teaching methods and/or students' learning behaviors to ensure greater student learning (Maki, 2004).

The Best Practice in a Classroom Assessment and is an example of a method that can be used to assess learning outcomes. At the end of a class period or major topic, faculty ask students to anonymously write down what point(s) were the most unclear to them. After class, faculty members review these responses and then re-teach or re-address any confusing topics, thus increasing student learning (Angelo & Cross, 1993).

7. DESCRIPTION OF A COURSE PURPOSE

When planning a course and determining the Learning Outcomes for that course, it is important to examine the course's purpose within the context of the college, and/or the department/program. This process will assist faculty in determining the intent of the course as well as how the course fits into the curriculum. This will help identify the essential knowledge, skills, etc. that should be incorporated into the course and the stated expected learning outcomes for the course. The course purpose section should clarify the level of the course within the programme (e.g., is the course required as a core or an elective and whether it requires any pre-requisites etc.). It should also describe the course's role in the departmental/programmatic curriculum by addressing the intent (importance, main contribution etc.) of the course.

STEP ONE: Determine if the course is part of the IEEE / ACM / AICTE Model Curriculum

The earliest curriculum was published in 1968 for computer science (CS) by the Association for Computing Machinery (ACM), and in 1977 the Computer Society of the Institute for Electrical and Electronic Engineers (IEEE-CS) provided its first curriculum recommendations. In the late 1980's the ACM and the IEEE-CS together formed a task force to create curricula for computer science and computer engineering. The core curriculum covers classes in computer science curriculum, and subsequently separate curricula reports were issued for information systems, software engineering and computer engineering

STEP TWO: Determine how the course fits into the departmental curriculum

Here are some questions to ask to help determine how a course fits in the departmental curriculum:

What role does the course play in the departmental/programmatic curriculum?

- Is this course required?
- Is this course an elective?
- Is this course required for some students and an elective for others?
- Does this class have a pre-requisite?
- Is this class a pre-requisite for another class in the department?
- Is this course part of IEEE / AICTE Model Curriculum?

How advanced is this course?

- Is this course an undergraduate or graduate course?
- Where does this course fall in students' degree plan as an introductory course or an advanced course?
- Can I expect the students taking this course to know anything about the course topic?
- Are other faculty members counting on students who have taken this course to have mastered certain knowledge or skills?

When students leave this course, what do they need to know or be able to do?

- Is there specific knowledge that the students will need to know in the future?
- Are there certain practical or professional skills that students will need to apply in the future?
- Five years from now, what do you hope students will remember from this course?

What is it about this course that makes it unique or special?

- Why does the program or department offer this course?
- Why can't this course be "covered" as a sub-section of another course?
- What unique contributions to students' learning experience does this course make?
- What is the value of taking this course? How exactly does it enrich the program or department?

8. PROCEDURE FOR DEVELOPMENT OF EXPECTED LEARNING OUTCOMES FOR A COURSE

The following pages should be of assistance in developing several broad, effectively stated expected learning outcomes for a course. When beginning to construct expected learning outcome statements, it is always good to think about the learners.

Please take a moment to think about the student learners in the course. Please consider the following questions:

- What are the most essential things the students need to know or be able to do at the end of this course?
- What knowledge and skills will they bring with them?
- What knowledge and skills should they learn from the course?

When you begin thinking about the expected learning outcomes for a course, it is a good idea to think broadly. Course-level expected learning outcomes do not need to focus on small details; rather, they address entire classes of theories, skill sets, topics, etc.

The "Course Description" contains the following contents:

- Course Overview
- Prerequisite(s)
- Marks Distribution
- Evaluation Scheme
- Course Objectives
- Course Outcomes
- · How Course Outcomes are assessed
- Syllabus
- List of Text Books / References / Websites / Journals / Others
- Course Plan
- Mapping course objectives leading to the achievement of the program outcomes
- Mapping course outcomes leading to the achievement of the program outcomes

9. **REFERENCES**

- 1. American Association of Law Libraries (2005). Writing learning outcomes. Retrieved May 31, 2005 from http://www.aallnet.org/prodev/outcomes.asp.
- 2. Anderson, L.W., and Krathwohl, D.R. (Eds.) (2001). Taxonomy of learning, teaching, and assessment: A revision of Bloom's taxonomy of educational objectives. New York: Longman.

- 3. Angelo, T.A. & Cross, K.P. (1993). Classroom assessment techniques: A handbook for college teachers (2nd Ed.). San Francisco, CA: Jossey-Bass. Ball State University, (1999).
- 4. Bloom's Classification of Cognitive Skills. Retrieved June 10, 2005 from http://web.bsu.edu/IRAA/AA/WB/chapter2.htm.
- 5. Bloom, B.S., (1956) Taxonomy of educational objectives: The classification of educational goals: Handbook I, cognitive domain. Longmans, Green: New York, NY.
- 6. Hales, L.W. & Marshall, J.C. (2004). Developing effective assessments to improve teaching and learning. Norwood, MA: Christopher-Gordon Publishers, Inc.
- 7. Huba, M.E., (2005). Formulating intended learning outcomes. Retrieved June 16, 2005 Fromhttp://www.viterbo.edu/academic/titleiii/events/files/Jun04/Intended% 20Learning% 20Outcomes.ppt #256,1,Formulating Intended Learning Outcomes.
- 8. Kansas State University, (2004). Assessment of student learning plan. Retrieved May 15, 2005 from http://www.k-state.edu/assessment/Library/templatew.doc.
- Kansas State University, (2004). Form for identifying strategies and processes for the assessment of student learning outcome(s). Retrieved May 15, 2005 from http://www.kstate.edu/assessment/Library/strategies.pdf.
- 10. Kansas State University, (2005). How to write student learning outcomes: Action verb List suggested verbs to use in each level of thinking skills. Retrieved May 15, 2005 from http://www.k-state.edu/assessment/Learning/action.htm.
- 11. Krumme, G (2001). Major categories in the taxonomy of educational objectives (Bloom 1956). Retrieved June 6, 2005 from http://faculty.washington.edu/krumme/guides/bloom1.html .
- 12. Maki, P.L. (2004). Assessing for learning: Building a sustainable commitment across the institution. Stylus: Sterling, VA.
- 13. Palomba, C.A. & Banta, T.W. Eds. (2001). Assessing student competence in accredited disciplines: Pioneering approaches to assessment in higher education. Stylus: Sterling, VA.
- 14. Siebold, R. & Beal, M. (May 2005). Online course development guide: The workbook. Presented at The Teaching Professor Conference in Shaumburg, IL.
- 15. Suskie, L. (ed) (2001). Assessment to promote deep learning: Insight from AAHE's 2000 and 1999 Assessment Conferences.
- 16. Suskie, L. (2004). Assessing student learning: A common sense guide. Anker Publishing Company: Bolton, MA.
- 17. St. Edward's University Center for Teaching Excellence (2004). Task Oriented Question Construction Wheel Based on Bloom's Taxonomy. Retrieved on May 17, 2005 from http://www.stedwards.edu/cte/resources/bwheel.htm.
- 18. Texas Tech University (2005). Texas Tech University 2005-06 Undergraduate and Graduate Catalog Volume LXXXII. Published by the Office of Official Publications: Lubbock.
- 19. TX. Texas Tech University Office of the Ombudsman, (2005). Syllabus Guide for Faculty: Tips for creating a conflict free syllabus. Retrieved June 9, 2005 from http://www.depts.ttu.edu/ombudsman/publications/SyllabusGuideforFaculty.doc.

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	ELECT	ELECTRONIC DEVICES AND CIRCUITS						
Course Code	AECB0	AECB06						
Programme	B.Tech	B.Tech						
Semester	II	II ECE						
Course Type	Core							
Regulation	IARE - R18							
			Theory		Practio	cal		
Course Structure	Lectu	res	Tutorials	Credits	Laboratory	Credits		
	3		1	4	-	-		
Chief Coordinator	Mr. V R Seshagiri Rao, Professor							
Course Faculty	Dr. P Ashok Babu, Professor Mr. B Naresh, Assistant Professor Mrs. M.Swarnalatha, Assistant Professor							

I. COURSE OVERVIEW:

This course provides the basic knowledge over the construction and functionality of the basic electronic devices such as diodes and transistors. It also provides the information about the electronic switches and the flow of current through these switches in different biasing conditions. This course is intended to describe the different configurations to provide temperature stability and how these electronic devices can be configured to work as rectifiers, clippers, voltage regulators, oscillators and amplifiers.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AEEB02	II	Electrical Circuit Analysis	4
UG	AHSB02	I	Linear Algebra and Ordinary	4
			Differential Equations	

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Electronic Devices and Circuits	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD/PPT	~	Seminars	~	Mini Project		Videos
×	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component		Total Marks		
Type of Assessment	CIE Exam	Quiz	AAT	Total Walks
CIA Marks	20	05	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

The AAT chosen for this course is given in section XI.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Quiz
PO 2	1 0 01	2	Assignments
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	3	Mini Project
PO 4	Conduct investigations of complex problems: Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Seminars / Mini Project

3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: An ability to understand the basic concepts in Electronics & Communication Engineering and to apply them to various areas, like Electronics, Communications, Signal processing, VLSI, Embedded systems etc., in the design and implementation of complex systems.	3	Seminars and Assignments
PSO 2	Problem-solving skills: An ability to solve complex Electronics and communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions.	2	Quiz and Assignments
PSO 3	Successful career and Entrepreneurship: An understanding of social-awareness & environmental-wisdom along with ethical responsibility to have a successful career and to sustain passion and zeal for real-world applications using optimal resources as an Entrepreneur.	2	Mini Projects

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES (COs):

The	The course should enable the students to:				
I	Introduce components such as diodes, BJTs and FETs.				
II	Know the applications of components				
III	Know the switching characteristics of components.				
IV	Give understanding of various types of amplifier circuits.				

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AEC001.01	CLO 1	Understand and analyze diodes operation and their characteristics in order to design basic circuits.	PO1	3
AEC001.02	CLO 2	Explain the operation of Zener diode and its usage in voltage regulating application.	PO1	2
AEC001.03	CLO 3	Explain the operational characteristics of various special purpose diodes such as zener diode, tunnel diode, varactor diode, photo diode and unijunction transistor	PO1	2
AEC001.04	CLO 4	Understand the principle of operation and characteristics of silicon controlled rectifier and its application in power supply protection circuit.	PO1 PO4	2
AEC001.05	CLO 5	Explain half wave rectifier without and with different filters for the given specifications	PO1 PO2	3
AEC001.06	CLO 6	Design full wave rectifier without filter and different filters for the given specifications.	PO3	3
AEC001.07	CLO 7	Design and selection of appropriate filter to meet the requirements of voltage regulation and ripple factor	PO3	3
AEC001.08	CLO 8	Write Use of diodes in typical circuits: clipping clamping circuits and comparator circuits.	PO1	2
AEC001.09	CLO 9	Understand the different parameters of transistors such as depletion width and channel width for understanding the functioning and design of this component	PO1 PO2	2
AEC001.10	CLO 10	Apply small-signal models to field effect transistors and determine the voltage gain and input and output impedances.	PO1 PO2	2
AEC001.11	CLO 11	Analyze various transistor configurations and asses merits and demerits for different applications.	PO1	2
AEC001.12	CLO 12	Discuss the construction of mosfet and steady the VI characteristics, as it is the prime component in VLSI technology.	PO1	3
AEC001.13	CLO 13	Distinguish the constructional features and operation of FET and MOSFET and their applications	PO1	2
AEC001.14	CLO 14	Develop the capability to analyze and design simple circuits containing non-linear elements	PO3	2

		such as transistors using the concepts of load lines, operating points and incremental analysis.		
AEC001.15	CLO 15	Identify the various transistor biasing circuits and its usage in applications like amplifiers.	PO1	3
AEC001.16	CLO 16	Explain basic circuits like dc and biasing circuits, small-signal ac circuits with emphasis on single-stage amplifiers.	PO1	2
AEC001.17	CLO 17	Explain the role of temperature variations on the performance of the BJT in order to take necessary measures in design for stabilization.	PO3 PO4	3
AEC001.18	CLO 18	Discuss and Design small signal amplifier circuits applying the various biasing techniques.	PO3	3
AEC001.19	CLO 19	Apply small-signal models to transistors and determine the voltage gain and input and output impedances.	PO2 PO3	3
AEC001.20	CLO 20	Analyze the performance of FETs on the basis of their operation and working.	PO3	3
AEC001.21	CLO 21	Apply the concept of electronic devices and circuits to understand and analyze real time applications.	PO4	2
AEC001.22	CLO 22	Acquire the knowledge and develop capability to succeed national and international level competitive examinations.	PO12	3

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program (hiteomac (PLIC)						Program Specific Outcomes (PSOs)								
Outcome s (CLOs)		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3												3		
CLO 2	2												1	3	
CLO 3	2												2		
CLO 4	2			2										3	
CLO 5	3	3												3	
CLO 6			3											2	
CLO 7			3											2	
CLO 8	2												3		
CLO 9	2	2											1		
CLO 10	2	2												3	

Course Learning	ng Program Outcomes (POs)						gram Sp comes (l								
Outcome s (CLOs)		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 11	2												2		
CLO 12	3													2	
CLO 13	2													2	
CLO 14			2										2		
CLO 15	3												3		
CLO 16	2												2		
CLO 17			3	3										2	
CLO 18			3											1	
CLO 19		3	3											1	
CLO 20			3										2		
CLO 21				2									1		
CLO 22												3			3

3 = High; 2 = Medium; 1 = Low

XI. ASSESSMENT METHODOLOGIES - DIRECT

CIE Exams	PO 1	SEE Exams	PO 1	Assignments	-	Seminars	PO 2
Laboratory Practices	1	Student Viva	ı	Mini Project	1	Certification	-
Term Paper	PO 4						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

'	Early Semester Feedback	'	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS:

MODULE -I	DIODE AND APPLICATIONS	Classes: 08	
MODELL I		Classes. 00	

Diode - Static and Dynamic resistances, Equivalent circuit, Load line analysis, Diffusion and Transition Capacitances, Diode Applications: Switch-Switching times. Rectifier - Half Wave Rectifier, Full Wave Rectifier, Bridge Rectifier, Rectifiers With Capacitive Filter, Clippers-Clipping at two independent levels, Clampers-Clamping Operation, types, Clamping Circuit Theorem, Comparators.

MODULE - II BIPOLAR JUNCTION TRANSISTOR (BJT)

Classes: 10

Principle of Operation and characteristics - Common Emitter, Common Base, Common Collector Configurations, Operating point, DC & AC load lines, Transistor Hybrid parameter model, Determination of h-parameters from transistor characteristics, Conversion of h-parameters.

MODULE - III TRANSISTOR BIASING AND STABILIZATION

Classes: 10

Bias Stability, Fixed Bias, Collector to Base bias, Self Bias, Bias Compensation using Diodes and Transistors.

Analysis and Design of Small Signal Low Frequency BJT Amplifiers: Analysis of CE, CC, CB Amplifiers and CE Amplifier with emitter resistance, low frequency response of BJT Amplifiers, effect of coupling and bypass capacitors on CE Amplifier.

MODULE - IV JUNCTION FIELD EFFECT TRANSISTOR

Classes: 08

Construction, Principle of Operation, Pinch-Off Voltage, Volt- Ampere Characteristic, Comparison of BJT and FET, Biasing of FET, FET as Voltage Variable Resistor, MOSFET Construction and its Characteristics in Enhancement and Depletion modes.

MODULE - V FET AMPLIFIERS

Classes: 09

Small Signal Model, Analysis of CS, CD, CG JFET Amplifiers. Basic Concepts of MOSFET Amplifiers. **Special Purpose Devices:** Zener Diode - Characteristics, Voltage Regulator; Principle of Operation - SCR, Tunnel diode, UJT, Varactor Diode.

Text Books:

- 1. Electronic Devices and Circuits Jacob Millman, McGraw Hill Education.
- 2. Electronic Devices and Circuits theory–Robert L. Boylestead, Louis Nashelsky, 11th Edition, Pearson, 2009.

Reference Books:

- 1. The Art of Electrionics, Horowitz, 3rdEdition Cambridge University Press, 2018
- 2. Electronic Devices and Circuits, David A. Bell 5th Edition, Oxford.
- 3. Pulse, Digital and Switching Waveforms –J. Millman, H. Taub and Mothiki S. Prakash Rao, 2 Ed., McGraw Hill, 2008.
- 4. Electronic Devices and Circuits, S. Salivahanan, N.Suresh Kumar, A Vallvaraj, 2nd Edition, TMH.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No.	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Calculate the dynamic and static resistances of diode	CLO 1	T1: 5.1

Lecture No.	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
2	Understand the diode diffusion and transition capacitances	CLO 1	T1: 5.1
3			
4	Understand diode load line	CLO 1	R5: 1.7
5	Examine the P-N junction to function as a switch	CLO 8	T1: 5.2
6	Understand and analyze P-N diode as half wave rectifier	CLO 5	T1: 6.1-6.2
7	Understand and analyze P-N diode as half wave rectifier.	CLO 5	T1: 6.1-6.2
8	Understand and analyze P-N diode as full wave rectifier	CLO 6	T1: 6.3
9	Understand and analyze P-N diode as full wave rectifier	CLO 5	T1: 6.3
10	Understand and analyze P-N diode as bridge rectifier	CLO 6	T1: 6.4-6.6
11	Understand and analyze P-N diode as rectifier	CLO 5	T1: 6.4-6.6
12	Understand and analyze C filters	CLO 7	T1: 6.7-6.8
13	Understand and analyze C filters	CLO 7	T1: 6.7-6.8
14	Model Zener diode as voltage regulator	CLO 2	T1: 6.15
15	Differentiate between clamping and clipping	CLO 8	R3:7.1, 8.1
16	Analyze Comparator circuits using diodes	CLO 8	R3:7.2
17	Understand the operation of bipolar transistor	CLO 9	T1: 7.1, 7.4
18	Examine the characteristics bipolar transistor	CLO 10	T1: 7.1
19	Elaborate CB characteristics	CLO 11	T1:7.7
20	Elaborate CE characteristics	CLO 11	T1: 7.8-7.10
21	Elaborate CC characteristics	CLO 11	T1: 7.12
22	Analyze operating point DC and AC load lines	CLO 14	R5: 4.2
23	Describe Hybrid model of BJT	CLO 16	T1: 10.6
24	Describe Hybrid model of BJT	CLO 18	T1: 10.4
25	Determine the h parameters	CLO 16	T1: 10.5
26	Conversion of h parameters	CLO 18	T1: 10.5
27	Understand the Transistor biasing	CLO 16	T1: 8.1
28	Understand fixed bias	CLO 15	T1: 8.4
29	Understand self-bias circuit	CLO 15	T1:8.5
30	Compare and contrast collector to base bias and self- bias	CLO 15	T1:8.6
31	Analyze and design proper Voltage divide bias	CLO 15	T1:8.6
32	Differentiate stabilization and compensation techniques	CLO 14	T1: 8.2 R5: 4.4
33	Differentiate stabilization and compensation techniques	CLO 14	T1: 8.2 R5: 4.4
34	Differentiate stabilization and compensation techniques	CLO 15	T1: 8.9
35	Examine thermal stability	CLO 17	T1: 8.12-8.13

Lecture No.	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
36	Analysis and design of Small Signal Low Frequency CB Amplifiers	CLO 18	T1: 10.6
37	Analysis and design of Small Signal Low Frequency CC Amplifiers	CLO 18	T1: 10.7
38	Analysis and design of Small Signal Low Frequency CE Amplifiers with Re	CLO 18	T1: 10.8
39	Analysis and design of Small Signal Low Frequency CE Amplifiers with bypass capacitor	CLO 18	T1: 10.9
40	Analysis and design of Small Signal Low Frequency CE Amplifiers without bypass capacitor	CLO 18	T1: 10.10
41	Understand the operation of FET transistor	CLO 13	R5:7.1-7.3
42	Understand FET construction	CLO 13	R5:7.4
43	Compare and contrast FET and BJT	CLO 13	R5:7.7
44	Understand MOSFET operation w	CLO 12	R5:7.9-7.16
45	Understand the operation of FET	CLO 20	T1: 12.1
46	Understand the operation of FET	CLO 20	T1: 12.1
47	Understand FET CD amplifier	CLO 20	T1: 12.2
48	Understand FET CS amplifier	CLO 20	T1: 12.3
49	Understand MOSFET amplifier	CLO 20	R5: 7.1-7.5
50	Model the FET circuits	CLO 21	T1: 12.11
51	Elaborate special purpose electronic devices: Tunnel diode, Varactor diode and V-I Characteristics	CLO 3	T1:5.13-5.14 R5: 8.2
52	Understand the operation of UJT.	CLO 3	T1: 12.12
53	Understand the characteristics of UJT	CLO 3	R5: 7.12-7.13

${\sf XV.}$ ${\sf GAPS}$ IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed Actions	Relevance With POs	Relevance With PSOs
1	Design of AC to DC Converters	Seminars / NPTEL	PO 1, PO 2, PO 3	PSO 1
		G : /G : I	DO 4 DO 4 DO 5	DOC 1
2	Design of amplifiers	Seminars / Guest Lectures	PO 2,PO 3, PO 5	PSO 1
	circuits	/ NPTEL		
3	Design of electronic	Laboratory Practices	PO 1, PO 3,PO12	PSO 1
	circuits on PCB	-		
	boards.			

Prepared by: Mr.V.R.Seshagiri Rao

HOD, ECE